Chat with us, powered by LiveChat











  1. 高隐蔽性——特别适用于嵌入式应用,包括碳复合结构及医用智能导管。
  2. 高灵敏度——通过更小作用力引发光纤应变,从而提高力学及声学传感器性能。
  3. 低弯曲半径——更低的表面应变水平使传感器设计更加小巧,节省空间。


Parameter Low Bend Loss Fiber 1550-125 Low bend loss fiber 830-125 Reduced cladding fibers
Reflectivity (for grating length of 8mm) > 15%
FWHM (for grating length of 8mm) 100 pm 30 pm 100 pm
Centre wavelength (extended range upon request) 1510–159 0 nm 1460–1620 nm 810–860 nm 1510–159 0 nm 1460–1620 nm
Absolute wavelength accuracy¹ ≤ 0.5 nm ≤ 0.8 nm ≤ 0.5 nm ≤ 0.5 nm ≤ 0.8 nm
Relative wavelength accuracy ≤ 0.3 nm ≤ 0.5 nm ≤ 0.3 nm ≤ 0.3 nm ≤ 0.5 nm
Side Lobe Suppression (SLS) ≥ 10 dB (typical)
DTG® length 1–10 mm / 8 mm (typical)
Attenuation < 8.6 dB/km < 18.4 dB / km < 8.6 dB/km
Mode Field Diameter (MFD) @ 1550 nm 6 μm (typical) 5 μm (typical) 6 μm (typical)
Numerical Aperture (NA) 0.26 (typical)
Cladding diameter 125 μm ± 1 μm 80 μm ± 1 μm
Coating type² ORMOCER®/ORMOCER®-T / One layer Acrylate
Coated fiber diameter 195 μm (typical) 120 μm (typical)
Tensile load at break³ > 50 N (corresponds to >5% strain) > 20 N (corresponds to >5% strain)
Temperature sensitivity⁴ (formula: Δλ/(λ ⋅ ΔT) ) 6.5 K-1 ⋅ 10-6 (typical)
Strain sensitivity¹ (formula: Δλ/(λ ⋅ Δε) ) 7.8 με-1 ⋅ 10-7 (typical)
Operational temperature range -200–200°C for ORMOCER®
-20–200°C for ORMOCER®-T
-20–90°C for One layer Acrylate

1 measured at room temperature
2 ORMOCER® is mainly applied for strain measurements while ORMOCER®-T is recommended for temperature measurements.
3 according to IEC-60793-1-31 using a constant displacement of 30 mm/minute
4 measured between 0°C and 70°C
5 Temperature range is dependent on exposure time.

ORMOCER®: trademark of Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.



* 这些字段是必需的。




Draw Tower Gratings (DTGs) are produced using a process that combines the drawing of the optical fiber with the writing of the grating. The input of the process is a glass preform. After heating the preform, the pulling and formation of the fibre will be initiated. Further in the production process, the fiber crosses the optical axis of a laser and the interferometer that create a periodical UV-light interference pattern in order to write the grating.  Using a pulse selector and taking into account the draw speed, FBGs can be accurately positioned in the fiber. When the grating has been written the fiber is coated by entering a coating reservoir, followed by a curing step of the coating. Finally the location of the DTG is marked automatically and the fiber is reeled onto a drum. This process of simultaneously drawing the fiber, writing the grating and coating the fiber directly after the grating inscription, results in high strength grating chains. As such the commonly used stripping and recoating process of standard FBGs is not necessary and the pristine fiber strength is maintained during the DTG manufacturing process.


Spatial Strain Sensing Using Embedded Fiber Optics

ECN is one of Europe‘s largest energy research organizations, focussed on sustainable energy generation to develop safe, efficient, reliable and environmentally friendly energy systems. It has a strong international position in the fields of biomass, solar energy, wind energy, energy efficiency and policy studies


* 这些字段是必需的。





FBGS Technologies GmbH
Winzerlaer Straße 2
D-07745 Jena


FBGS International NV
Bell Telephonelaan 2H

B-2440 Geel


X2 Suzhou Electronic Technology
Room 103, No. 388
Xinping Str. SIP, Suzhou